
Proposal  for  Val idat ion of  a
Multispectral  Synthe t i c  Scene  Genera tor  Mode l

by:

Marcos C. Sola, Mark W. Orletsky, Quochien B. Vuong, and Charles R. Kohler

Synthetic Imagery Branch, Sensors and Electron Devices Directorate,
U. S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783.

ABSTRACT

The establishment of a sufficient, field-measured database to support the analysis of ATR algorithms,
sensor fusion effectiveness, and sensor system performance for multiple combinations of targets, environments,
sensors, and locations will severely challenge the limited, available resources within the Army. However, the use of
a high-resolution, synthetic scene generator model (SSGM) for time-independent applications can alleviate the
database requirement. A methodology for a robust validation of SSGM is proposed, which will consist of defining
sets of images (real and corresponding SSGM imageries) and using human observers to define a baseline. First-order
comparisons of a real scene to a synthetic scene will be performed with the use of the filters in the TARDEC [20]
model or a comparable computational vision model (CVM).  The similarity of target to background histograms as a
function of various CVM filters will need to be analyzed to define first order-effects. Second-order metrics are defined
in terms of probability of detection, detection timeline, and false alarm rate. A metric for the target signature will be
mathematically defined to test these second-order effects. For a given application. the necessary and sufficient
metrics are discussed.

1. INTRODUCTION

A great number of Army programs require a significant number of signature databases in order to satisfy
program development. A partial listing of these programs include Intelligence Signature Assessment, Battlefield
Visualization Test Bed (BVTB),  ATR Algorithm Development, Sensor Performance Analyses, Multi-Sensor Fusion,
Countermeasure/Counter-Countermeasure (CM/CCM),  Target Acquisition (TA) Modeling Improvement, Required
Operational Capability Requirements, Tri-Service  Smart Missile/Munitions Testing, and Computer War Gaming
Input.

Any of the programs listed above would require signatures related to target acquisition. Target acquisition is
a function of many variables; among them are the target, background, environment, geographical location, time, and
sensor. Each of these sets is composed of subsets. To physically measure signatures in the field to satisfy a wide
dynamic range of signature conditions would be a substantial budgetary challenge for any project manager [14]. The
physically measured data must not only answer the requirements of the project, but also must be general and of
sufficient resolution to take into account other near term signature requirements [21]. Hence, there is the need to
make use of synthetic databases to augment, supplement, and/or complement field databases. However, this requires
a robust validation of the particular synthetic scene generator model (SSGM)  that is used so that it gains credibility
and acceptance in the modeling and simulation community.

2 A P P R O A C H

An integral step in the validation of an SSGM is to compare a set of image pairs under the criteria that are
relevant to the given application. An image pair is defined here to be the physically measured scene (target in
background/clutter) and the corresponding synthetically generated scene based on model input requirements. For
example, if we had a real-synthetic pair of images of a simple block world, with well-defined lighting, angles, etc.,
we would almost definitely do well by comparing the images on a pixel-to-pixel basis. While not every pixel of the
synthetic image would have the same value as the corresponding pixel of the real image, a sufficient number would
be close enough to indicate the quality of the synthesis. In this case, the simplicity of the “world” under
consideration would almost definitely permit synthesis of images that are pixel-wise very similar to real images.



.

Figure 1. Examples of different images that have the same grey-level  histograms.

For most applications of synthetic images, however, a bit-wise comparison to a corresponding real image is
impractical as a validation criterion. Take, for example, the task of comparing images of a natural scene containing
trees, grass, sky, water, etc. Here the variations that could be expected between the images would be large. For
example, the wind may sway the objects in different directions, the clouds may cast shadows in different places, ad
so forth. Thus, the use of a pixel-to-pixel comparison would almost definitely be too exacting to effectively
evaluate the quality of the synthesis.

An alternative method of comparison that has seen substantial use involves the comparison of statistics [2,
3, 4, 5, 8,9, 20] that have been derived over the entire image. Such statistics include grey-level  histograms, local-
energy histograms, and many others. These statistics frequently give information about the quality of a synthetic
image, but rely on obtaining the statistics from the image as a whole, and thus can be misleading, as the following
examples show.

Intensity histogram (also called grey-level  histogram) is a necessary but not sufficient tool for comparative
assessment of an image pair. Figure 1 shows two different image pairs that would produce the same intensity
histogram for both images in each of the given pairs, while Figure 2 shows two different weapon platforms with
exactly the same intensity histogram. Figure 2 was produced by a C-program that repositions the pixels of one
image to approximate the other. Thus virtually any image can be slightly mochfied to have a grey-level histogram
of another image while still retaining its original “look”. Thus, given this example, sole reliance on histogram
distribution as a similarity-metric for image comparison can lead to a wrong conclusion.

Figure 2. A tank and a helicopter with their identical grey-level  histogram.



The validation approach taken by the Army Research Laboratory (ARL) is to develop a robust SSGM
validation methodology for any synthetic rendering model. In particular, we would like to test this methodology
against our own model for generating synthetic images, CREATION [6, 7, 10, 11, 17, 18]. Figure 3 is a generic
approach to the problem of image validation. An “image pair” is passed through a comparator, and its output is
statistically analyzed to identify a validation metric.
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Diagram of an approach to image validation.

The comparator is composed of three components: a computation vision model, a non-computational
vision model approach, and always a group of human observers used as a baseline. First-order validation metrics are
obtained from a computational vision model such as the Georgia Tech Vision Model [2, 3], TARDEC [20] Vision
Model, German CAMAELEON [4, 5, 9] Model, or other suitable candidates. Second-order metrics are obtained by
using trained, human observers to provide probability of detection, highest level of acquisition (classification,
recognition, identification) given detection, detection timeline, and false alarm rate. The noncomputational vision
model approach can provide either first-order or second-order metrics. Note that if an image has the same second-
order metrics as another, this does not necessarily mean that their validation metrics will be the same. Consider as
an example two images that provide all the same second-order metrics as previously mentioned. Such a condition
can be satisfied, for example, by a low observable tank at close range vs. a high contrast tank at long range (all other
variables being equal). A robust set of validation metrics should provide an indication of two different scene
conditions.

From the comparator, a master list of candidate validation metrics is compiled. A sufficient set of image
pairs is parsed through the particular component of the comparator that is being tested for statistical analysis. These
metrics are then “rank-ordered” from zero to one in terms of how similar the synthetic scene is compared to the real
scene. A similarity of one is a perfect fit, while a similarity of zero signifies no correlation between the two images
being compared. The number of validation metrics required is a function of the SSGM application. For high-
resolution applications, such as target acquisition modeling improvement, most if not all the validation metrics with
high similarity values may be required. For low-resolution applications, such as real time computer war gaming,
only a certain portion of the validation metrics may be needed and their similarity metric requirement will be less
stringent. It is therefore necessary to rank-order the validation metrics from the master list for a given synthetic
scene-rendering application. In the CREATION model, we have a problem of field measured data from which we can
generate a synthetic scene. Part of the problem is that this particular model requires a 24-hour diurnal cycle target
signature history in order for us to be able to create a synthetic scene. Note that although ARL needs to validate the
CREATION model, it must first be able to develop a robust validation methodology. To alleviate the image pair
database problem, some pairs could be created from real field data, as, for example, scenes at different times or for the
same time and background, but different targets.



3.0 PRESENT METHODOLOGY

Our current validation approach is to postula
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Figure 4. M60-A1 tank.
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Figure 5. CAMAELEON histograms.

A wide dynamic range of signature image pairs is created from field measured data and its corresponding
synthetic scene or from field data with differences in either time, background, target, environment, or other
measurable variables. Each image set is parsed through a comparator using, in this case, the German computational



vision model CAMAELEON [4, 5, 9]. This model provides, as an output, the first-order metrics such as grey level,
frequency, orientation, and local energy distributions. For each of these metrics, a statistical analysis is applied in
terms of mean, median, mode, variance, standard deviation, absolute deviation, skew, kurtosis, and entropy. Figure
4a shows the field-measured data of an M60-AI tank scene taken with a calibrated infrared sensor at Fort AP Hill,
VA. A data artifact was introduced unintentionally because every other field was missed during the digitization
process, resulting in a lower quality image than what a high-resolution, calibrated DL FLIR [ 16] is capable of
showing. Figure 4b is the synthetic infrared rendering by the CREATION model. It contains some statistical
sampling rather than first principle rendering of background data. Figure 5 shows the comparison between the real
and the synthetic scene based on the output of the CAMAELEON model. Figure 6 shows our use of the similarity
metric with our present validation approach. Two noncomputational vision approaches developed by ARL for
comparing images, the “Region-Based” and the “Symmetric Difference” methods, are discussed next.
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Figure 6. Image similarity.
3.1 A Region-Based Method of Comparing Images

Historically, there have been two different approaches for comparing a real scene to the synthetically
rendered scene. One relies on very local information such as pixels, and the other relies on global information such
as statistics generated over the entire image. Our approach is to use the middle ground between these approaches.
We call it a region-based method of comparing images.

In region-based image comparison, we produce a mask that defines nominally 40 to 100 regions in the
real or the synthetic image under comparison. This mask is then applied to both the real image and the synthetic
image, and image-statistics (grey-level  histograms, local-energy, etc.) are computed over each region. Comparisons
are then made from the statistics obtained from each region to the statistics obtained from the same region in the
other image. A real-synthetic image comparison is then obtained by computing the area-weighted average of the
similarity metrics that resulted from each of these local comparisons.

For example, note that the images in Figure 2 have identical global grey-level  histograms. Thus any
comparisons based on global grey-level histograms will indicate that the two images compare identically. Suppose, .
alternatively, that we generated any arbitrary tessellation and applied that tessellation to both images. We could then
generate the grey-level  histograms over each of the regions produced, and then compare the histogram of a particular
region to the histogram in the corresponding region in the other image. While the grey-level  statistics over the
images as a whole were identical, the same statistics over a small portion of each of the images would most likely
not be.

Thus, regionalization has the potential to reduce the negative effects of false matches that can wcur
when comparisons based on global image statistics are used. Additionally, the use of regionalization cannot produce



results that make images appear to be statistically more similar than that which would be obtained from a global
comparison. Specifically, if the images compare favorably on a region-to-region basis, they will also compare
favorably globally. In short, regionalization can be used to allow a more rigorous application of common global
statistics, and achieves a balanced medium between the very demanding bit-wise image comparisons and the
somewhat ineffectual global comparisons.

As to the question of which regionalization to use, it is the opinion of the authors that any
regionalization or tessellation would be acceptable since an arbitrmy regionalization has the potential for producing
more accurate image comparisons than the corresponding global comparison, and no regionalization has the potential
for producing comparisons that are less appropriate than global comparisons. We, however, also see an advantage in
producing regionalizations that are consistent with the low-frequency variations that are naturally present in the
image.

3.1.1 A Method of Comparing Images Under a Low-Frequency Mask

In this section we describe step-by-step a region-based approach of comparing two images. Step 1
aligns the two images with each other, Step 2 matches the average brightness of one image to that of the other
image, Step 3 creates a low-frequency mask, and Step 4 uses the mask to apply a global image comparison metric.

Step 1: Register and crop the images.
The first step in comparing images is to make sure they are (1) registered (or aligned) with each other and (2) of
identical size. We accomplish this as follows. A human operator locates a well-defined point in each image and
determines the pixel coordinates of that point. At present, a tool such as xv (x-windows view) is used to determine
the coordinates of that point. Note that the real and synthetic images have not been previously registered, so the
coordinates of the “well-defined point” will in general be different for the two images. Our program crop is then used
to produce a new image for each of the two original images. The new images will be of a specific size and centered
at the chosen point. We used a size of 256 pixels by 256 pixels for the initial trials. At this point we have a real-
synthetic pair of images that are the same size and registered with each other.

This registration process involves translation only. A more sophisticated method of registration would also include
rotation and scaling. However, this would necessitate a method of mapping the rectilinear grid of pixels of the
original image to another grid of a different angular orientation and having a different scale. Methods for performing
such a mapping exist, though they generally introduce artifacts, and the artifacts would have a great potential to pose
problems for the comparison. Thus, we insist that the real and synthetic images be made to the same scale and
oriented at the same angle, and then the registration is done by performing only a translation.

Step 2: Gamma-match the images.
A process that we call gamma-matching is used to change the brightness levels of the synthetic image so that the
total brightness of the synthetic image is within a small factor of the total brightness of the real image. This is
done with gamma-con-ection  as follows. If the synthetic image is dimmer than the real image, gamma values are
successively chosen starting at 1 and increasing in steps of 1 until the brightness of the corrected synthetic image
exceeds the brightness of the real image. If the synthetic image is brighter than the real image, gamma values iue
successively chosen starting at 1 and decreasing in steps of 0.1 until the brightness of the corrected synthetic image
is less than the brightness of the real image. When such cross-over points are found, the process is repeated with
smaller step sizes, specifically step sizes of one tenth the size currently being used. This entire process is repeated
until the ratio of the total brightness of the synthetic image to the total brightness of the real image is within a
small constant of 1. We have been using the constant 0.001.

Step 3: Construct a template for one of the two images.
The process of constructing a low-frequency template for an image involves three steps: low-pass filtering the
image, multilevel thresholding  the image, and uniquely labeling the regions that result. These three steps are
explained next.

Step 3a: Low-pass filter the image.
The image is low-pass filtered by convolving it with a square template containing a normalized Gaussian function.
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Here, the user specifies the size of the “radius” of the template to be used and then the template is automatically
generated. For example, if the template radius is chosen to be 5, then an 11 by 11 template will be generated. This
template is then filled with a two-dimensional Gaussian function centered at the center pixel in the template and
having a sigma chosen so that the area under the Gaussian curve over the template is 99% of the total area under the
Gaussian curve over the entire real plane. The entries in the template are then normalized over the template (i.e.,
scaled so that they sum to 1). When the image has been convolved with such a template, the brightness values of
the image will be “smooth” in the sense that there will be no rapid changes in brightness. The image will actually
appear blurred. This is done so that the next step of thresholding will not produce many small regions, which would
be possible if the image contained high-frequency components.

Step 3b: Apply multilevel thresholds to the image.
After Step 3a, the image will have brightness values that do not change rapidly throughout the image. In fact, the
image can be thought of as a landscape in which the brightness values represent altitudes. After the low-pass
filtering, all the hills and valleys will be smooth and gently rounded. There will be no sharp peaks, no spikes, no
cliffs, no abrupt changes of any sort.

We now apply a multilevel thresholding  process to the low-pass filtered image. Here, we (arbitrarily) choose 4
levels of brightness uniformly spaced between the dimmest pixel value and the brightest pixel value. Thus, every
single pixel in the image falls into exactly one range. Each pixel is then assigned a number from 1 to 5
corresponding to the range into which it falls. After this thresholding process, the image appears somewhat like a
topographic map in that the regions shown correspond to the brightness range of the pixels in the region. This
looks very similar to topographic maps that show the altitude ranges between the curves on the map.

Step 3c: Label the regions produced.
The next step is to give the region that result from the above step a unique label and to give all pixels the label of
the region into which they fall. To accomplish this, we initially set all pixels to be unlabeled and then start in the
upper left comer of the image and proceed in a raster-like scan. During the scan, we do the following. When an
unlabeled pixel is encountered, we use a recursive process that we call “flooding” to label each pixel in the same
region as the newly encountered pixel with the “next available label”. When the single raster scan completes. all
pixels in the image will be labeled, either from the scan itself or from the recursive flooding process.

Here we scan the image from left to right and from top to bottom in a raster pattern. If a pixel is encountered that is
unlabeled, it is given the “next available label” and the recursive “flooding” procedure is invoked. This procedure
will attempt to recurse one pixel left, one pixel right, one pixel up, and one pixel down from the recently labeled
pixel. Specifically it will recurse in those directions if and only if the pixel in that direction has not been previously
labeled, the pixel in that direction exists (i.e., it is not at the edge of the image), and the pixel in that direction has
the same brightness value (after the thresholding)  as the recently labeled pixel. Thus the recursion will prccecd to
label all pixels in the given region and it will not proceed across region boundaries. At the completion of
recursively labeling a region, the raster scan will continue until another unlabeled pixel is encountered at which point
the region containing it will be flooded in a similar manner. This continues until the entire image has been scanned
and labeled.

Step 4: Apply a global-metric according to the mask produced.
Upon completion of the mask, or tessellation, that was produced by Step 3, we can now use that mask to apply a
similarity metric in a region-based fashion. As an example, let us consider using the “common area overlap” of the
gray-level histogram as our metric. Recall that if we were using this metric in the global sense, we would generate
the gray-level histogram for the real image and also for the synthetic image, normalize each of those histograms, and
then determine the area under the histograms that is common to both histograms. Note that this area will be zero if
the histograms are completely disjoint and it will be one if the histograms are identical. In the region-based method,
we will apply this metric not to the images as a whole, but to each of the individual regions of the tessellation.
Thus we will obtain a number between zero and one for each of the regions that indicates the extent to which the
gray-level histograms of the two images resemble each other in that region. To obtain the final image metric, we
simply take an area-weighted average of the similarity metrics that we obtained for the regions.



3.1.2 The Symmetric Difference Method

The segmentation of images into regions as described above can also be used to produce a figure of
metric of comparison between two images. Consider generating one mask based on the real image and another mask
based on the synthetic image. Comparing the masks, then, could be used as a method of comparing the images.

The manner in which we compare the masks is as follows. For one of the two masks, say that derived
from the real image, consider a particular region in the mask. Calculate the symmetric difference between this region
and every region in the mask of the other (synthetic) image and choose the minimum. Notice that if this region
closely coincides with a region in the other image, this minimum will be small. In fact, if there is a region in the
other mask that is identical to the region under comparison, this minimum will be zero. Now choose a second
region in the real image and repeat this process to obtain another “minimum symmetric difference”. If we continue
this for all regions in the image, we will develop a string of minimum symmetric differences. We use the sum of
this sequence as the image metric.

Notice that this sum will be small when each region in the real image closely coincides with a related
region in the synthetic image, and it will be large otherwise. Thus, we have a metric that will be zero upon
comparing two identical images, it will be small when comparing two images with similar low-frequency structures,
and it will increase for images that have few such commonalties.

4. G O A L S

The near-term goals are to be able to generate a sufficient number of image pairs over a wide dynamic
signature range based on high-quality field measurement data. Investigation of other candidate validation metrics [19]
will need to be analyzed.

The long-term goal is to compare various target acquisition models in terms of their capability to
predict second-order effects, again over a wide dynamic signature range. The prediction results from these various
models can be compared to the baseline (human observers), and the differences can be analyzed using validation
metrics identified to date from this work.

A vision to allow optimization of resources in this particular research area is to apply this
methodology for dual technology application (military and nonmilitary). The methodology being developed for
validation will lend itself well for the analysis to allow improvement of target acquisition modeling. One pristine
area for target acquisition enhancements for the milita~, as well as for law enforcement, is in the littoral
environment [12, 13, 15]. A coalition force is being attempted between DoD agencies that could be extended to
NATO working groups that are interested in this particular area of R&D.
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